Coronal Heating, Weak Mhd Turbulence and Scaling Laws

نویسنده

  • A. F. Rappazzo
چکیده

Long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out, within the framework of reduced magnetohydrodynamics (RMHD), to understand coronal heating driven by motion of field lines anchored in the photosphere. We unambiguously identify MHD anisotropic turbulence as the physical mechanism responsible for the transport of energy from the large scales, where energy is injected by photospheric motions, to the small scales, where it is dissipated. As the loop parameters vary different regimes of turbulence develop: strong turbulence is found for weak axial magnetic fields and long loops, leading to Kolmogorov-like spectra in the perpendicular direction, while weaker and weaker regimes (steeper spectral slopes of total energy) are found for strong axial magnetic fields and short loops. As a consequence we predict that the scaling of the heating rate with axial magnetic field intensity B0, which depends on the spectral index of total energy for given loop parameters, must vary from B 3/2 0 for weak fields to B 2 0 for strong fields at a given aspect ratio. The predicted heating rate is within the lower range of observed active region and quiet Sun coronal energy losses. Subject headings: Sun: corona — Sun: magnetic fields — turbulence

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence.

We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies t...

متن کامل

Nonlinear Dynamics of the Parker Scenario for Coronal Heating

The Parker or field line tangling model of coronal heating is studied comprehensively via longtime high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy. In physical sp...

متن کامل

An anisotropic turbulent model for solar coronal heating

Context. We present a self-consistent model of solar coronal heating in which we include the dynamical effect of the background magnetic field along a coronal structure by using exact results from wave MHD turbulence. Aims. We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active regions and also coronal holes. Methods. The corona...

متن کامل

Dynamic Alignment and Exact Scaling Laws in Magnetohydrodynamic Turbulence

Magnetohydrodynamic (MHD) turbulence is pervasive in astrophysical systems. Recent highresolution numerical simulations suggest that the energy spectrum of strong incompressible MHD turbulence is E(k⊥) ∝ k ⊥ . So far, there has been no phenomenological theory that simultaneously explains this spectrum and satisfies the exact analytic relations for MHD turbulence due to Politano & Pouquet. Indee...

متن کامل

A Self-consistent Model for the Resonant Heating of Coronal Loops: the Effects of Coupling with the Chromosphere

We present the Ðrst model of resonant heating of coronal loops that incorporates the dependence of the loop density on the heating rate. By adopting the quasi-static equilibrium scaling law o P Q5@7, where o is the density and Q is the volumetric heating rate, we are able to approximate the well-known phenomena of chromospheric evaporation and chromospheric condensation, which regulate the coro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008